centrifugal pump solved examples|centrifugal pump size chart : tv shopping
Handle Wet Debris and More with the Dustless Slurry Vacuum. The sealed drum head stands up to the toughest of job site punishment, keeping debris out of the motor for unrelenting performance and reduced replacement costs. The .
{plog:ftitle_list}
Tunnel Boring Machine (TBM) The TBM excavates soil and conveys the excavated material out of the tunnel. In slurry-supported tunnelling, the bentonite suspension supports the tunnel face in the excavation chamber, enabling a safe advance. The bentonite suspension also serves as a transport medium for the excavated soil. Learn more
Centrifugal pumps are widely used in various industries for fluid transportation and are known for their efficiency and reliability. In this article, we will explore a centrifugal pump example to understand how these pumps work and how to calculate important parameters.
The document contains 5 solved problems related to centrifugal pumps. The problems cover topics like calculating head, power required, efficiency,
Example:
A centrifugal pump has an outlet diameter equal to two times the inner diameter and is running at 1200 rpm. The pump works against a total head of 75 m. We need to calculate the velocity of flow through the impeller.
Solution:
To calculate the velocity of flow through the impeller, we can use the formula:
\[ V = \frac{Q}{A} \]
Where:
- \( V \) = Velocity of flow (m/s)
- \( Q \) = Flow rate (m\(^3\)/s)
- \( A \) = Area of the impeller (m\(^2\))
First, we need to calculate the flow rate using the formula:
\[ Q = \frac{\pi \times D^2 \times N}{4 \times 60} \]
Where:
- \( D \) = Diameter of the impeller (m)
- \( N \) = Pump speed (rpm)
Given that the outlet diameter is two times the inner diameter, we can calculate the diameter of the impeller:
Inner diameter, \( D_i = D \)
Outlet diameter, \( D_o = 2D \)
Area of the impeller, \( A = \frac{\pi}{4} \times (D_o^2 - D_i^2) \)
Substitute the values and calculate the flow rate:
\[ Q = \frac{\pi \times (2D)^2 \times 1200}{4 \times 60} \]
Next, we calculate the area of the impeller:
\[ A = \frac{\pi}{4} \times ((2D)^2 - D^2) \]
Now, we can calculate the velocity of flow using the formula mentioned earlier.
Dimensionless performance curves for a typical centrifugal pump from data given in Fig. 14.9 Fig. (14.10)
The CDP system is an effective and safe solution for cuttings handling, ensuring the efficient transfer of cuttings from shakers to cuttings bins or slurry units. Home Products CDP© – Cuttings Discharge Pump For more than 15 years, OTT .
centrifugal pump solved examples|centrifugal pump size chart